

Peter J. Cotty
Agricultural Research Service
United States Department of Agriculture
School of Plant Sciences
University of Arizona, Tucson

Native isolates of *Aspergillus flavus* that do not produce aflatoxins are used to displace aflatoxin producers and to reshape fungal communities.

There are many effective isolates.

The displacement results in reduced aflatoxin contamination.

Frequencies of Vegetative Compatibility Groups among 200 L Strain Isolates of *Aspergillus flavus* isolated from Cotton in South Texas During 1999

108 Vegetative Compatibility Groups

Aflatoxin Production by Fungal Isolates in Liquid Fermentation

54 Isolates from One Agricultural Field

Fungi Vary Across Areas in Aflatoxin-Producing Ability

The average aflatoxin-producing potential of fungi on a farm influences the vulnerability of crops grow on that farm to aflatoxin contamination

Aflatoxin Production by A. flavus from Two Fields

Crop Aflatoxin Content Decreases as Incidence of the Applied Strain Increases

Influence of Field Application of Atoxigenic *A. flavus* on Aflatoxin, Infection, and the Total Amount of *A. flavus*

	Aflatoxin B ₁ (mg kg ⁻¹)	Infection (%)	A. flavus on crop (propagules/g)	Applied strain (%)
Treated	0.3 b	1.03 a	23,949 a	100 a
Control	81.8 a	0.85 a	28,949 a	7 b

Values followed by a common letter do not differ significantly.

Commercial Maize Test: North Central Texas 2008

				Aflatoxin (ppb)		
Area	Samples (#)	AF36	(%)	Mean	Range	
Grayson North	17	96	a	12 a	0 to 48	
Grayson South	16	98	a	15 a	0 to 38	
Grayson Control	8	24	b	230 b	5 to 530	

Means in the same column with different letters are significantly different by Tukey's HSD test, P < 0.001.

Efficacy

Adapted to the target cropping system

Environmental Safety

The species is very broadly adapted, difficult to predict all influences of introducing an exotic

Competitiveness in Endemic Niches

Long-term influences

Acceptance

Farmer preference

Ownership

Owned by nation of origin

Administrative

Frequencies of Vegetative Compatibility Groups among 200 L Strain Isolates of *Aspergillus flavus* isolated from Cotton in South Texas During 1999

108 Vegetative Compatibility Groups

Frequencies of the 12 Most Common Vegetative Compatibility Groups on Cotton In Arizona from 2000 to 2002

Frequencies of Vegetative Compatibility Groups among 200 L Strain Isolates of *Aspergillus flavus* isolated from Cotton in South Texas During 1999

Efficacy

Adapted to the target cropping system

Environmental Safety

The species is very broadly adapted, difficult to predict all influences of introducing an exotic

Competitiveness in Endemic Niches

Long-term influences

Acceptance

Farmer preference

Ownership

Owned by nation of origin

Administrative

In Native Desert Areas of the Sonoran Desert both Aflatoxins and Aspergillus flavus are Very Common

A. flavus and aflatoxins in pods of four common legumes in the Sonoran Desert

*Ironwood & Acacia only dehisced pericarps from ground.

Boyd & Cotty, 2001. Phytopathology 91:913-919.

Efficacy

Adapted to the target cropping system

Environmental Safety

The species is very broadly adapted, difficult to predict all influences of introducing an exotic

Competitiveness in Endemic Niches

Long-term influences

Acceptance

Farmer preference

Ownership

Owned by nation of origin

Administrative

Composition of *Aspergillus flavus* Communities in Soil of Treated and Nearby Fields in May 1996 Prior to Application of AF36 and in May 1997 One Year After Application

	,	AF36 (% <i>A. flavus</i>)		S strain (% <i>A. flavus</i>)		A. flavus (CFU/gram)	
Field	Fields_ (#)						
type		1996	1997	1996	1997	1996	1997
Treated	3	4% ab	85% a	52 % a	4% d	582 a	365 a
Adjacent	4	2% b	48% b	41%a	18% c	411 a	157 a
Diagonal	4	2% b	16% c	52 % a	33% b	61 a	100 a
Other	4	9% a	9% c	43% a	50 % a	109 a	98 a

Other	Adjacent	Treated	Adjacent	Other	Other
Other	Diagonal	Adjacent	Diagonal	Other	Other

Grayson County: Carry Over to the Second Year Crop

Incidence of Eight *A. flavus* Strains on Treated Crops and in Soil 1 Year After Application - Average of 3 Trials

Efficacy

Adapted to the target cropping system

Environmental Safety

The species is very broadly adapted, difficult to predict all influences of introducing an exotic

Competitiveness in Endemic Niches

Long-term influences

Acceptance

Farmer preference

Ownership

Owned by nation of origin

Administrative

Efficacy

Adapted to the target cropping system

Environmental Safety

The species is very broadly adapted, difficult to predict all influences of introducing an exotic

Competitiveness in Endemic Niches

Long-term influences

Acceptance

Farmer preference

Ownership

Owned by nation of origin

Administrative

Efficacy

Adapted to the target cropping system

Environmental Safety

The species is very broadly adapted, difficult to predict all influences of introducing an exotic

Competitiveness in Endemic Niches

Long-term influences

Acceptance

Farmer preference

Ownership

Owned by nation of origin

Administrative

NAFDAC officials inspecting maize fields treated with AflaSafe

The Initial Atoxigenic Strain Pesticide Registration A Public Sector Effort

Biopesticide Registration of *Aspergillus flavus* AF36 Milestones

- 1993 First Meeting with EPA
- 1995 IR-4 Biopesticide Program Joined the Effort
- 1996 First EUP Granted Allowed Treatment of 1120 acres over 3 year period (1996 through 1998).
- 1999 EUP expanded to include 20,000 acres per year.
- 2002 EUP expanded to include 20,000 acres in Arizona and 2,000 acres in Texas.
- 2003 Section 3 registration granted allowing treatment of unlimited acreage in Arizona & Texas.
- 2007 EUP to Treat 3,000 acres of pistachios in California. Approved in 2008 by CDPR.
- 2008 EUP to treat 6,000 acres of corn. Pistachios expanded to include 1,000 acres in Arizona.

Crops are infected by complex communities of diverse fungi

We can influence aflatoxin-producing ability of fungal communities resident in production areas through crop rotations, agronomic practice, and by applying atoxigenic strains

There are many atoxigenic strains

Select strains best adapted to rotations, ecosystems, & climates

Atoxigenics are Already Present on the Crop

Just increasing the frequency of endemic strains & natural interference with contamination

Treatments May have Long-Term Influence & Cumulative Benefits

More than One Crop May Benefit From the Same Strain

Atoxigenic Strains can be Applied Without Increasing Infection

and without increasing the overall quantity of A. flavus on the crop & throughout the environment